Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton.
نویسندگان
چکیده
In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation.
منابع مشابه
Using Iron-Chelating Agents in Critically Ill Patients with Iron Overload. Fact or Fiction?
Recently, some evidence has shown that the failure of iron homeostasis may occur in critically ill patients and can lead to iron overload. Elevated ferritin levels as a body iron burden index in critically ill patients may be associated with depressed level of consciousness and greater mortality. However, the necessity of using iron-chelating agents in clinical situation is still unknown for th...
متن کاملIron-regulatory proteins, iron-responsive elements and ferritin mRNA translation.
Iron plays a central role in the metabolism of all cells. This is evident by its major contribution to many diverse functions, such as DNA replication, bacterial pathogenicity, photosynthesis, oxidative stress control and cell proliferation. In mammalian systems, control of intracellular iron homeostasis is largely due to posttranscriptional regulation of binding by iron-regulatory RNA-binding ...
متن کاملIron regulation by hepatocytes and free radicals
Iron is an essential metallic microelement for life. However, iron overload is toxic. The liver serves an important role as a storehouse for iron in the body. About 20-25 mg of iron is required each day for hemoglobin synthesis. To maintain iron homeostasis, transferrin and transferrin receptors are primarily involved in the uptake of iron into hepatocytes, ferritin in its storage, and ferropor...
متن کاملRegulation of ferritin-mediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori.
Homologs of the ferric uptake regulator Fur and the iron storage protein ferritin play a central role in maintaining iron homeostasis in bacteria. The gastric pathogen Helicobacter pylori contains an iron-induced prokaryotic ferritin (Pfr) which has been shown to be involved in protection against metal toxicity and a Fur homolog which has not been functionally characterized in H. pylori. Analys...
متن کاملIron at the center of ferritin, metal/oxygen homeostasis and novel dietary strategies.
Bioiron - central to respiration, photosynthesis and DNA synthesis and complicated by radical chemistry with oxygen - depends on ferritin, the super family of protein nanocages (maxi-ferritins in humans, animals, plant, and bacteria, and mini-ferritins, also called DPS proteins, in bacteria) for iron and oxygen control. Regulation of ferritin synthesis, best studied in animals, uses DNA transcr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 47 شماره
صفحات -
تاریخ انتشار 2015